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Artificial Intelligence
As graph neural networks are becoming more and

more powerful and useful in the field of drug discovery,

many pharmaceutical companies are getting interest-

ed in utilizing these methods for their own in-house

frameworks. This is especially compelling for tasks such

as the prediction of molecular properties which is often

one of the most crucial tasks in computer-aided drug

discovery workflows. The immense hype surrounding

these kinds of algorithms has led to the development of

many different types of promising architectures and in

this review we try to structure this highly dynamic field

of AI-research by collecting and classifying 80 GNNs

that have been used to predict more than 20 molecular

properties using 48 different datasets.

Introduction
The prediction of molecular properties is a fundamental task

in the field of drug discovery. Computational methods for

their accurate prediction can significantly accelerate the

overall process of finding better drug candidates in a faster

and cheaper way. This is especially compelling when consid-

ering that the average development cost for a new drug is

currently estimated to be at around $2.8 billion [1]. The

traditional in silico approach for predicting molecular prop-
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erties has mainly relied on extracting fingerprints or hand-

engineered features, which are then used in combination

with machine learning algorithms. In an effort to capture

features needed for the task at hand, these kinds of molecular

representations are inherently biased by domain experts [2].

In order to move beyond this kind of bias to a more general

approach, different types of machine learning algorithms

have been introduced into the field of molecular property

prediction. Especially deep-learning algorithms have seen a

resurgence due to not only accelerating computational pow-

er, and increasing availability of large data sets but also due to

its immense success in related fields such as natural language

processing [3] and pattern recognition [4]. These kinds of

networks are capable of learning representations in an auto-

mated way for a specific task and can therefore eliminate the

complicated feature engineering process [5]. In order to use

deep-learning algorithms and circumvent the domain specif-

ic feature engineering, an appropriate representation for

molecules needs to be found. As molecules can be represented

as graphs, one approach would be to simply use the molecular

graph representation – which lead to the development of

graph based neural networks (GNNs) which gained more and

more attention and became increasingly popular in the last

few years [6–8]. They seem to become one of the most

promising deep-learning methods for graph specific tasks,

especially due to their success in outperforming traditional

machine learning methods in the prediction of quantum

mechanics properties [9–12,5], physicochemical properties
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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Fig. 1. Shows the proportion of GNN publications to molecular
property prediction publications and the intersection of publications
included in this survey.
like hydrophobicity [13–15] or the prediction of toxicity

[16–19].

Due to the recent acceleration in publications related to

molecular property prediction with GNN it often can be

difficult to keep up with the current state of this field. For

this reason, we provided this review that aims to give a

comprehensive overview over the current status-quo of this

rapidly developing area of research.

Our contribution is to give an overview over GNNs that

have been utilized to predict one or more molecular proper-

ties (Fig. 1). We first introduce a neural network classification

scheme similar to [6,7] and give a high-level method intro-

duction of all 80 GNN architectures found in more than 63

publications. We then use a similar categorization as in [9] in

order to define 5 general categorizations, namely Quantum

Chemistry, Pysicochemical Properties, Biophysics, Biological

Effect and Synthetic Accessibility, which consist of 20 differ-

ent molecular properties and 48 different datasets. We then

highlight which GNNs have been used in combination with

one of them respectively. The overall structure of this survey

is as follows:

� A high-level introduction to the different GNN categories

used in this review (Section ‘Graph neural networks’).

� An overview over molecular property predictions with

their corresponding GNNs (Section ‘Molecular property

prediction’).

Disclaimer. The reader should be aware that this publi-

cation does not aim at providing an exact categorization for

the molecular properties or giving a qualitative evaluation of

what GNN performs better. Its main focus lies on giving an

overview over the status-quo of what properties have been

used in combination with GNNs. Otherwise this would be out

of the scope of this short review.

Graph neural networks
This section provides a short introduction to graph neural-

networks (GNN) and also outlines their categorization that

we will refer to throughout this review. A detailed description

of each distinct GNN is out of scope so we can only give a

high-level introduction to the different approaches and refer

to the corresponding publications listed in Tables 2 and 3 for

further implementation details. Common notions and acro-

nyms are given in Table 1 whereas the overall classification

scheme is given in Table 2. Overall, we reviewed 80 distinct

GNN architectures and split them into three different cate-

gories. The first two categories are based on their overall

propagation type – namely recurrent graph neural networks

(Rec-GNN ‘Recurrent graph neural networks’) and convolu-

tion graph neural networks (Conv-GNN ‘Convolutional

graph neural networks (Conv-GNN)’). All different variations

are being described with respect to their most basic distinc-
2 www.drugdiscoverytoday.com
tion. There exist several different types of networks within

one GNN variation – this mostly comes from either using

different initial node or edge featurizations, differences in

what kind of features are being used during the aggregation

(node and or the inclusion of edge features etc.) or additions

to the described basic characteristics (GNNs that use a con-

volution aggregation in addition with some gated output

function or attention mechanisms, etc.)

In addition to that we introduce a third category, namely

distinct graph neural network architectures (Dist-GNN

‘Distinct architectures’). The distinction made is not based

on the propagation type, but this category rather consists of a

collection of distinct graph based neural-network architec-

tures (Section ‘Distinct GNNs’) that we wanted to highlight

separately as well as possible architectural additions (Section

‘Additions’) to any kind of graph neural-network architecture

like skip-connections, different pooling methods or attention

mechanisms.

It is also important to note that not all references in Table 2

do point to the original GNN publication but to a publication

which applied them to molecular property predictions. For

example GraphSAGE [20] – it has been published in 2017 but

Hamilton et al. [20] did not apply it on molecular property

predictions. Errica et al. [21] and Hu et al. [19] however did so

in 2019 and 2020 respectively. In this case we included both

references in Table 3, each time GraphSAGE was used. How-

ever, in Table 2 we only included one reference as both refer

to the same model, which can be looked up in either of these

two publications.

Graphs
A graph in this review is defined as G ¼ ðV ; EÞ, where V is a

set of nodes and E denotes a set of edges. Let v 2 V be a
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Table 1. Common notations used throughout this publica-
tion.

Notations Definitions

� Element-wise product

r A non-linear function (e.g. sogmoid or relu)

½; � Vector concatenation

t Iterator of t steps

MT Matrix transpose

G A mathematical graph
V Set of nodes
E Set of edges

v Node v 2 V

euv Edge euv 2 E between node u and v

NðvÞ Neighbors of node v

n The number of nodes
m The number of edges
d The dimension of a node feature vector
b The dimension of an edge feature vector

X 2 Rn�d Feature matrix of a graph

xv 2 Rd Feature vector of node v

xeuv 2 Rb Feature vector of edge euv

hv 2 Rc Hidden feature vector of node v

he
uv 2 Ra Hidden feature vector of edge euv

HðtÞ 2 Rn�h Hidden feature matrix of all nodes at iteration t

WðtÞ Weight matrix of a neural network at iteration t

A 2 f1; 0gjnjxjnj (Unweighted) adjacency matrix

D 2 Zjnjxjnj Degree matrix. Duu ¼Pn
v¼1 Auv

Asym Symmetrically normalized A. Asym ¼ D�1=2AD�1=2
node with feature vector xv and euv 2 E be an edge pointing

from u to v with feature vector xeuv. The adjacency matrix A

shows the connectivity of the nodes and is binary if the

graph is unweighted. It is defined as a n � n matrix

with Auv ¼ 1 if euv 2 E and Auv ¼ 0 if euv=2E. The symmetri-

cally-normalized adjacency matrix is defined as

Asym ¼ D�1=2AD�1=2, where D is the degree matrix defined

as D 2 ZjVjxjV j. In general, molecular graphs are undirected,

unweighted and mostly heterogeneous. A graph is undi-

rected if and only if A is symmetric and where euv ¼ evu and

undirected graphs are considered to be a special case of

directed graphs, where euv 6¼ evu. Heterogeneous graphs con-

tain different types of nodes and edges with their corre-

sponding featurizations.

Learning approaches
There exist several different strategies for training GNNs.

Depending on the task at hand and the available data, this

can be done via supervised, unsupervised, semi-supervised or

reinforcement learning. Typical tasks can include node, edge

or graph classification, link prediction or graph regression.
Supervised learning can be utilized for different graph-

level tasks such as node, edge or graph classification as well as

graph regression tasks. The main objective in supervised

learning is to reduce the loss between the predicted and

the true value, which can be either a class label or a numeric

value. Most common loss functions for classification tasks are

cross-entropy and negative log-likelihood whereas for regres-

sion tasks often functions such as root mean squared error or

root mean absolute error are being used.

Unsupervised learning is applied when no class

labels are available. In such a case, the end-to-end learning

can be done by, e.g. reconstructing the whole graph in

order to learn a representation that contains the graph

structure as well as information about it or by removing

certain parts of the graph like nodes or edges and then

predict them. Popular tasks include link prediction, node

classification or representation learning for downstream

tasks.

Semi-supervised learning includes both, labeled and

unlabeled data and it is mostly used in the case when not

enough labeled data is available. In such instances, the infor-

mation contained by the graph representation is enriched via

the unsupervised learning setting in order to perform better

in the downstream supervised task.

Reinforcement learning is another learning approach

that differs from supervised or unsupervised learning. The

typical framework of RL consists of an environment, a set of

possible actions that can be performed by an agent, a current

state and a scoring function. Based on the current state, the

agent performs an action which has an impact on the envi-

ronment and leads to a new state. The performed action is

being evaluated by the scoring function and depending on

the reward, the agent learns whether this action in the

current state of the environment leads to a higher reward

or not.

Recurrent graph neural networks
Recurrent graph neural networks (Rec-GNNs) were among

the first graph based neural networks to be utilized for mo-

lecular property prediction (Fig. 3) and their main difference

to convolution based graph neural networks (Section

‘Convolutional graph neural networks (Conv-GNN)’) is

how the information is being propagated. Rec-GNNs apply

the same weight-matrices in an iterative way till an equilibri-

um is reached whereas Conv-GNNs apply different weights at

each timestep t (Fig. 2). The earliest approaches of Rec-GNNs

were based on directed, acyclic graphs [12] in supplementary

material. Nevertheless, the first Rec-GNN to be utilized for

molecular property predictions was introduced by Scarselli

et al. [55] and they relaxed these constraints by also being

capable of dealing with undirected and cyclic graph repre-

sentations. They introduced the term graph neural networks

(GNN) and applied a local transition function (also called
www.drugdiscoverytoday.com 3
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Table 2. Shows the categorization of all GNNs used for molecular property prediction in this review.

Graph neural network
category

Variant Approach GNN-Name

Convolution graph-neural-
network (Conv-GNN)

Spatial GCN ChemNet [22] GCN [23] NN4G [24] CNN [25] EAGCN [13] MGE-CNN [16]
AGNN [14]
GFN [26] GraphSAGE [21] MxPool [27] DGCNN [28] DCNN [29] Siamese-GCN
[30]
3DGCN [31] ECC [29] InfoGraph [32] IterRefLSTM [30] CapsGNN [33] GCAPS-
CNN [33]
MGN [2] Patchy-San [34] Deep-LRP [35] SN-GCN [36] ExGCN [37] Att/Gate-
GCN [38]
GAT [19] PotentialNet [39] MT-PotentialNet [40] C-SGEN [14] attnLSTM [30]
IGN [41]

MPNN MPNN [5] SELU-MPNN&E/AMPNN [17] D-MPNN [10] DiffPool [21]

MV-GNNcross [42] SAMPN [43] ASGN [44] GraphNet [45] DGGNN

[46] R-GCN [47] GSN [48]

OT-GNN [15] GCN+VN [49] CCN [41] GPNN [11]
Spectral – LanczosNet [11] SpecConv [50] RGAT [51] AGCN [52] EigenGCN [53] PIN [48]

SGC [14] ChebyNet [11]
Recurrent graph-neural-
network (Rec-GNN)

Recurrent RNN UG-RNN [54] R-GNN [55] MGCN [1] in supplementary material GGRNet [12]
IGNN [2] in supplementary material GPNN [11]

GRU E/AMPNN [17] DGGNN [46] MSGG [3] in supplementary material PotentialNet
[39] MT-PotentialNet [40] GGNN [37]

LSTM IterRefLSTM [30] attnLSTM [30] GatedGCN [48]
Distinct GRAPH-NEURAL-
NETWORK ARchitectures
(Dist-GNN)

Distinct Approaches Weisfeiler–Lehman 1-2-3-GNN [4] in supplementary material PPGN [41] 3WL-GNN [5] in
supplementary material StructPool [18] GIN [6] in supplementary material GIN
+VN [49] RP-GIN [7] in supplementary material

Transformer PAGTN [8] in supplementary material MAT [9] in supplementary material
Additions Attention GAT [19] CapsGNN [33] Att/Gate-GCN [38] E/AMPNN [17] RGAT [51]

IterRefLSTM [30] AGNN [14]

SAGPool [10] in supplementary material MV-GNNcross [42] SAMPN [43]

ExGCN [37] MSGG [3] in supplementary material EAGCN [13]

attnLSTM [30]

Skip Connection PAGTN [8] in supplementary material Att/Gate-GCN [38] GGRNet [12] ExGCN
[37]
C-SGEN [14] GatedGCN [48]

Super-Node SN-GCN [36] GWM [11] in supplementary material GIN+VN [49] GCN+VN [49]
Pooling SortPool [28] SAGPool [10] in supplementary material StructPool [18] MxPool

[27] EigenGCN [53] DiffPool [21] set2set [10] in supplementary material
LRP [35] RP [7] in supplementary material gPool [10] in supplementary material
aggregation function) Mwð�Þ which updates the node’s hid-

den feature vector hðtÞ
v at time t via

hðtÞ
u ¼

X
v2NðuÞ

rðMwð½xu; xeu;v; xv; hðt�1Þ
u �ÞÞ ð1Þ

where xu and xeuv are the labels of current node and edge

respectively, xv are the neighboring node labels and hðt�1Þ
u is

the ðt � 1Þ hidden feature vector. hð0Þu is initialized randomly.

The parametrization of the neural network Mwð�Þ is the same

for all t. After t iterations, the output function Owð�Þ takes the

hidden features and generates the node’s output vector ŷ.

It is defined as

ŷ ¼ Ow

X
v2G

hðtÞ
v

  !
ð2Þ
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These two functions can be seen as a vanilla Rec-GNN (RNN

in Fig. 2). The two different states can be summed up as

information diffusion function or aggregation function and

output function.

More sophisticated Rec-RNN include aggregation func-

tions that are similar to gated GNNs – two approaches include

aggregation functions such as gated recurrent units (GRU [13]

in supplementary material) or long-short-term memory

(LSTM [14] in supplementary material) networks. Several

different modifications of GRU and LSTM networks have

been introduced and their vanilla approach can be defined

for a GRU or LSTM aggregate as

hðtÞ
u ¼Pv2NðuÞ GRUwðhðt�1Þ

u Þ
hðtÞ
u ¼Pv2NðuÞ LSTMwðhðt�1Þ

u Þ ð3Þ
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Table 3. Summary of what GNN was used with which dataset and its corresponding category.

General category Molecular properties Dataset name Prediction task GNN name

Quantum chemistry Coordinates (PES) COD/CSD Regression DGGNN [46]
Partial charges Chembl Sub-DS Regression GraphNet [45]
Energies QM7 Regression D-MPNN [10,42] GGRNet [12] MPNN [9,10,12] [8] in

supplementary material [42] GCN [9,10,12] [8] in supplementary
material [42]

PAGTN [8] in supplementary material MV-GNNcross [42]

MGCN [42]

QM8 Regression GGRNet [12] MPNN [9–12,39,17] [8] in supplementary material
[42] GCN [9–12,17] [8] in supplementary material [11,42]

PAGTN [8] in supplementary material MV-GNNcross [42]

LanczosNet [11] GGNN [11] DCNN [11] PotentialNet

[39]

ChebyNet [11] GraphSAGE [11] E/AMPNN [17] D-MPNN [10,42]
MGCN [42] GPNN [11]

QM9 Regression MPNN [5,9,35,10] [2,1] in supplementary material [12] [4,8] in
supplementary material D-MPNN [10] GGRNet [12] CCN [41]
GAT [2] in supplementary material
GCN [9,10] [8] in supplementary material [12] [2,11] in
supplementary material DGGNN [46] 1-2-3-GNN [4] in
supplementary material [35] Deep-LRP [35] ChebyNet [2] in
supplementary material
ASGN [44] MGCN [1] in supplementary material IGNN [2] in
supplementary material PAGTN [8] in supplementary material
InfoGraph [44] R-GCN [2] in supplementary material GWM [11] in
supplementary material
GIN [2,11] in supplementary material LanczosNet [2] in
supplementary material GGNN [2,1,11] in supplementary material
RGAT [11] in supplementary material PPGN [35] DiffPool [41]

OPV Regression ASGN [44] InfoGraph [44]
Physicochemical
properties

Polar surface area ZINC Sub-DS Regression Att/Gate-GCN [38] GCN [38]

HPLC EPSA DS Regression MT-PotentialNet [40]
Bioavailability AMGEN-PXR-DS Classification ChemNet [22]
Octanol solubility Abrahams-DS Regression CNN [25]
Aqueous solubility Huuskonen Regression UG-RNN [54]

Intrinsic solubility DS Regression UG-RNN [54]
Solubility challenge DS Regression UG-RNN [54]
ESOL Regression UG-RNN [54,25] [3] in supplementary material GCN

[23,25,14,9,37,39,17,10] [3,8,9] in supplementary material [42] E/
AMPNN [17]

Aqueous solubility ESOL Regression D-MPNN [10,15] PAGTN [8] in supplementary material OT-GNN
[15] AGNN [14] PotentialNet [39] ExGCN [37]
ChebyNet [52] SpecConv [52] GGNN [37] MPNN [17,42,14,9,10]
[3,8] in supplementary material CNN [25] SGC [14]

3DGCN [31] AGCN [52] MV-GNNcross [42] MSGG [3] in

supplementary material C-SGEN [14] MAT [9] in

supplementary material EAGCN [9] in

supplementary material

ZINC Sub-DS Regression GSN [48] GAT [48] [5] in supplementary material GIN [48] [5] in
supplementary material GatedGCN [48] MPNN [5] in
supplementary material [48] 3WL-GNN [5] in supplementary
material
GCN [5] in supplementary material GraphSAGE [5] in
supplementary material

OChem Regression SAMPN [43] MPNN [43]
Boiling/melting point Alkane DS Regression NN4G [24]

Bradley-good DS Regression D-MPNN [10] MPNN [10] GCN [10] CNN [25]

www.drugdiscoverytoday.com 5
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Table 3 (Continued )

General category Molecular properties Dataset name Prediction task GNN name

Hydrocarbon DS Regression ChemNet [22]
Passive-membrane-perm. P_app DS Regression MT-PotentialNet [40]
Blood-brain-perm. BBBP Classification D-MPNN [10,15,42] PAGTN [8] in supplementary material MAT

[9] in supplementary material MPNN [17,9,42,10] [3,8] in
supplementary material MGCN [42]

MV-GNNcross [42] E/AMPNN [17] MSGG [3] in

supplementary material OT-GNN [15] EAGCN [9] in

supplementary material

GAT [19] GIN [19] GCN [19,9,17,42,10] [3,8,9] in supplementary
material UG-RNN [3] in supplementary material GraphSAGE [19]

Hydrophobicity ZINC Sub-DS Regression Att/Gate-GCN [38] GCN [38]
Az-logD DS Regression AGCN [52] ChebyNet [52] SpecConv [52]
logD DS Regression MT-PotentialNet [40]
LIPO DS Regression EAGCN [13] E/AMPNN [17] D-MPNN [10,15] GWM [11] in

supplementary material AGNN [14] PT-GNN [15]

PAGTN [8] in supplementary material MV-GNNcross [42] MSGG

[3] in supplementary material MPNN

[17,42,14,9,10,43] [8] in supplementary material

GIN [11] in supplementary material

SAMPN [43] C-SGEN [14] ExGCN [37] GGNN [37] [11] in
supplementary material GCN [14,9,37,42,17,10] [8,11] in
supplementary material
SGC [14] RGAT [11] in supplementary material

Solvation free energy FreeSolv Regression MPNN [14,9,10,42] [3] in supplementary material D-MPNN [10,42]
EAGCN [13] [9] in supplementary material SN-GCN [36]

AGNN [14]
MV-GNNcross [42] UG-RNN [3] in supplementary

material GCN [36,14,9,10] [3] in supplementary

material [42] [9] in supplementary material SGC [14]

MAT [9] in supplementary material

Solvation Free Energy FreeSolv Regression MSGG [3] in supplementary material C-SGEN [14] MGCN [42]
3DGCN [31]

HFE-DS Regression AGCN [52] ChebyNet [52] SpecConv [52]
Metabolic stability MetStab DS Classification MAT [9] in supplementary material GCN [9] in supplementary

material EAGCN [9] in supplementary material
Biophysics Affinity PDBbind Regression D-MPNN [10] MPNN [10,14,9] [3] in supplementary material GCN

[10,14,9] [3] in supplementary material MSGG [3] in supplementary
material AGNN [14]
C-SGEN [14] PotentialNet [39] UG-RNN [3] in supplementary
material SGC [14]

Efficacy Gamo DS Regression GCN [23]
Activity NCI AIDS DS Classification MGN [2]

ChEMBL Sub-DS Classification MPNN [10] GCN [10,8] D-MPNN [10]

Estragon ab DS Classification MAT [9] in supplementary material GCN [9] in supplementary
material EAGCN [9] in supplementary material

DPP4 DS Classification SpecConv [50]
PCBA DS Classification D-MPNN [10] SN-GCN [36] MPNN [9,10] GCN [36,9,10]

GIN [49] GCN [49] GIN+VN [49] GCN+VN [49]
MUV Classification SELU-MPNN&E/AMPNN [17] attnLSTM [30] Siamese-GCN [30]

MPNN [17,9,10]
SN-GCN [36] IterRefLSTM [30] D-MPNN [10] GraphSAGE [19]
GAT [19]
RP-GIN [7] in supplementary material GIN [19] GCN [19,9] [7] in
supplementary material [36,17,10]

HIV Classification EAGCN [13] E/AMPNN [17] D-MPNN [10] Deep-LRP [35] GAT
[19,48,35]
GWM [11] in supplementary material SN-GCN [36] GSN [48]
MPNN [17,48,9,10] RGAT [11] in supplementary material

6 www.drugdiscoverytoday.com
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Table 3 (Continued )

General category Molecular properties Dataset name Prediction task GNN name

GIN+VN [49] 3DGCN [31] GatedGCN [48] GCN+VN [49] RP-
GIN [7] in supplementary material
GIN [19,48,35,49] [11] in supplementary material GCN [19,48,9]
[7] in supplementary material [35,36,17,10,49] [11] in
supplementary material GraphSAGE [19,35]

NCI1 Classification DGCNN [21,48,26] [6] in supplementary material [27,33,53] [4,10]
in supplementary material Patchy-San [34,26] [4,6] in supplementary
material [29,33]
SAGPool [10] in supplementary material [27] GraphSAGE [21,27]
GSN [48] IGN [41,48] GIN [6] in supplementary material [21,26,27]
PIN [48] 1-2-3-GNN [4] in supplementary material AGCN [52]
ECC [29,21,33] CapsGNN [33,26] set2set [10] in supplementary
material [53]

Activity NCI1 Classification gPool [10] in supplementary material [27] EigenGCN [53] DiffPool
[21,27,53] [10] in supplementary material SpecConv [52] MxPool
[27] CCN [41]
GCAPS-CNN [33] PPGN [41,48] DCNN [29,48] [6,4] in
supplementary material GFN [26] ChebyNet [52]

BACE Classification MPNN [10,9] [3,8] in supplementary material [42] GCN [10,9] [3]
in supplementary material [19] [8,9] in supplementary material [42]
D-MPNN [10,42,15]

MV-GNNcross [42] MSGG [3] in supplementary material

GIN [19] 3DGCN [31] EAGCN [9] in supplementary

material PAGTN [8] in supplementary material

GraphSAGE [19,53] GAT [19] OT-GNN [15] MAT [9] in
supplementary material MGCN [42]

Biological effect Side effects SIDER Classification SELU-MPNN&E/AMPNN [17] D-MPNN [10,42] IterRefLSTM [30]
SpecConv [52]

AGCN [52] MV-GNNcross [42] GIN [19] MPNN

[17,9,10,42] ChebyNet [52] MGCN [42]

GCN [19,9,10,17,42] GraphSAGE [19] GAT [19] attnLSTM [30]
Siamese-GCN [30]

Toxicity MUTAG DS Classification R-GNN [55] GIN [6] in supplementary material [26,18] RGAT [51]
IterRefLSTM [51] DGCNN [28,26] [6] in supplementary material
[33,53]
Patchy-San [34,26] [6] in supplementary material [29,33] GSN [48]
DCNN [29] [6] in supplementary material DiffPool [41,53] IGN
[41] PPGN [41]
PIN [48] ECC [29,33] InfoGraph [32] R-GCN [47] CNN [41] GCN
[53] CapsGNN [33,26]
EigenGCN [53] StructPool [18] GFN [26] GCAPS-CNN [33]
set2set [53] GraphSAGE [53]

Tox21 Classification CNN [25] E/AMPNN [17] PotentialNet [39] attnLSTM [30]
Siamese-GCN [30]
GWM [11] in supplementary material RGAT [51] SN-GCN [36]
IterRefLSTM [30,51] MPNN [17,9,10,42]

Deep-LRP [35] AGCN [52] MV-GNNcross [42] SpecConv [52]

ChebyNet [52]

RP-GIN [7] in supplementary material GIN [19] GCN [19,9] [7] in
supplementary material [36,39,17,10,42] GAT [19] ExGCN [37]
GGNN [37]
GraphSAGE [19] D-MPNN [10,42] MGCN [42]

ToxCast Classification MPNN [10,9] D-MPNN [10] SN-GCN [36] AGCN [52] SpecConv
[52] ChebyNet [52]
GIN [19] GCN [19,9,36,10] GraphSAGE [19] GAT [19]

ClinTox Classification MPNN [10,9,42] D-MPNN [10,42] AGCN [52] MV-GNNcross [42]

SpecConv [52]

www.drugdiscoverytoday.com 7
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Table 3 (Continued )

General category Molecular properties Dataset name Prediction task GNN name

GIN [19] GCN [19,9,10,42] GraphSAGE [19] GAT [19] MGCN
[42] ChebyNet [52]

PTC DS Classification GIN [6] in supplementary material [18] DGCNN [28] [6,4] in
supplementary material Patchy-San [34][6,4] in supplementary
material PPGN [41] DCNN [41] [6,4] in supplementary material

PTC DS Classification InfoGraph [32] PIN [48] StructPool [18] IGN [41] 1-2-3-GNN [4] in
supplementary material [41] ECC [41]

Toxicity AOT DS Classification & MGE-CNN [16]
Regression

ADMET General ADMET DS Regression MT-PotentialNet [40]
Synthetic accessibility Synthetic accessibility ZINC-DS Regression Att/Gate-GCN [38] GCN [38]
where GRUw or LSTMw is the aggregation function with the

same parametrization for the whole neural network.

It is important to note that there exist neural networks in

Table 2 that are both, Rec-GNN and Conv-GNN. This applies

for, e.g. [17] because they use a MPNN approach in their

E/AMPNN networks with a GRU update function (not aggre-

gation) – same applies for [11] (GPNN) and [30] (IterRefLST-

M&attnLSTM). Additionally, Feinberg et al. [39,40] both

utilize PotentialNet, which uses GRU as an update function

but different weightings for each edge type during the aggre-

gation. Therefore, it is also in both categories. We also con-

sider all LSTM and GRU approaches to be RNNs but not vice

versa.

Convolutional graph neural networks (Conv-GNN)
The main difference to Rec-GNNs is that the aggregation

function uses different weights for each timestep t or for each

relational feature (relational graph neural networks [51,47]

and [7] in supplementary material). Conv-GNNs can be fur-

ther divided into two main categories – spectral and spatial

Conv-GNNs.
Rec-GNN 

Fig. 2. Difference between recurrent (Rec-GNN) and convolution (Conv-GNN
(W1 ¼ W2) until a convergence criterion is met, whereas Con

8 www.drugdiscoverytoday.com
For both types of Conv-GNNs, several different architec-

tures have been developed (Table 2). The common denomi-

nator within spectral methods is that they are based on the

eigendecomposition of the laplacian matrix L. For most

spectral Conv-GNNs applications L is the symmetrically

normalized (Lsym), which can then be defined as

Lsym ¼ D1=2LD1=2

L ¼ D � A
ð4Þ

where D is the degree matrix. The eigendecomposition of the

L can then be defined as

L ¼ VLVðTÞ ð5Þ
where L and V are eigenvalues and eigenvectors of L respec-

tively. Their aggregation function is generally defined as

Ht ¼ VðV ðTÞHðt�1Þ � V ðTÞQðt�1Þ
spectralÞ ð6Þ

where HðtÞ is the hidden feature matrix at timestep t and

Q
ðt�1Þ
spectral is a matrix of kernel parameters, which can be shared

over the whole graph. The hidden feature matrix can be

initialized as H0 ¼ X 2 Rn�d. There exist several smaller and
Conv-GNN

Drug Discovery Today: Technologies

) based graph neural networks. Rec-GNN apply the same set of weights
v-GNNs apply different weights at each iteration.
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Fig. 3. Timeline of GNNs for molecular property prediction with the corresponding categories used in this survey. * stands for the quantum
mechanical property category, x is the physicochemical category, # is the biophysics category, + is the biological effects category and $ stands for a
collection of datasets
bigger deviations from this general approach, which can be

seen in Table 2.

The advantage of spectral methods is that they are capable

of capturing global patterns [52] in graphs whereas spatial

Conv-GNNs only achieve that by either stacking several

different aggregation layers [28] on top of each other or by

using additional architectures like attention mechanisms

[19]. Nevertheless, the main disadvantage of spectral meth-

ods is that Qspectral depends on the number of nodes n as well

as the graph structure encoded in V, which makes it

difficult to apply learned filters on graphs with different

structures ([10] in supplementary material).

Spatial Conv-GNNs, on the other hand, work by adding up

the adjacent local neighborhood of a node. Within this Conv-

GNN variant, we distinguish two different approaches: The

first one can be summarized under the name graph convolu-

tion networks (GCN [23]), whereas the second one is defined

as message passing neural networks (MPNN [5]). The main

difference between the two is that GCN in general comprises

two phases; the aggregation and the readout phase, whereas

the MPNN variant includes a message passing function

MðtÞwi ð�Þ – basically the aggregation function in GCN – an

additional update function UðtÞwk
ð�Þ and the readout func-

tion Owj
ð�Þ. Both perform the same type aggregation but call

it differently. Overall the aggregation or message passing

function involves multiplying the feature matrix X 2 Rn�d

with different forms of the graph’s A defined as

Ht ¼ rðAHðt�1ÞWðtÞÞ
Ht ¼ rð~AHðt�1ÞWðtÞÞ
Ht ¼ rð~D�1~AHðt�1ÞWðtÞÞ
Ht ¼ rð~D�1=2~A~D

�1=2
Hðt�1ÞWðtÞÞ

ð7Þ

HðtÞ is the updated hidden feature matrix and WðtÞ is the

weight matrix at the current time step. ~A is the adjacency

matrix of the graph combined with its identity matrix. Each

of the equations in Eq. (7) is adding another complexity level.

The first one is the most basic spatial Conv-GNN approach,

which simply sums over the local neighborhood and updates

the corresponding features. The second one does the same
but also includes a self-loop. The third equation additionally

includes a row-wise normalization of A and the fourth and

last equation also utilize a symmetric normalization.

The aggregation and readout of a GCN in its simplest form

can be defined as

hðtÞ
u ¼Pv2NðuÞ rðMðt�1Þ

wi
ðhðt�1Þ

v ÞÞ
ŷ ¼ Owj

ðPv2G hðtÞ
v Þ ð8Þ

where Mðt�1Þ
wi

ð�Þ is the aggregation and Owj
ð�Þ is the output

function leading to the prediction ŷ. The simplest MPNN [5]

can be defined with one addition as

m
ðtÞ
u ¼Pv2NðuÞ rðMðt�1Þ

wi
ðhðt�1Þ

v ÞÞ
hðtÞ
u ¼ Uðt�1Þ

wk
ð½hðt�1Þ

u ; m
ðt�1Þ
u �Þ

ŷ ¼ Owj

P
v2G hðtÞ

v

� � ð9Þ

where m
ðtÞ
u is the message coming from node u neighbors and

Uðt�1Þ
wk

is the update function, which is the main addition.

Distinct architectures
This section introduces several additions to the basic GNNs

like different pooling strategies and skip-connections, which

can be applied to any kind of GNN or architecturally distinct

GNNs that should get highlighted separately and do not fully

fit into the Conv-, Rec-GNN classification scheme described

above.

Additions

Skip-connections are additions that take the input vector

hðt�1Þ
u of layerðt�1Þ and concatenate it (or any other kind of

multiplication) with the output vector hðtÞ
u – so they simply

skip one layer at a time. By doing so, they introduce an

alternative flow path for the gradient during the back-

propagation step. This can be beneficial for the conver-

gence of the model by mitigating the vanishing gradient

problem [38,12].

Pooling, on the other hand, is a non-linear approach for

down-sampling features [35] and can be done in different

ways. Applying simple functions like taking the mean, maxi-
www.drugdiscoverytoday.com 9
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mum or sum in order to reduce the dimension of the feature

vector can often lead to poor performance([6] in supplemen-

tary material). This is especially striking in smaller graphs as

single nodes might have a strong influence on its overall

property and with a pooling function that increases or

decreases the information of that node, it can lead to poor

performance([11] in supplementary material). This is why

using different pooling strategies have been developed espe-

cially for molecular graphs – ranging from relational pooling

(RP [7] in supplementary material) to graph Fourier transfor-

mations approaches (EigenPool [53]).

Attention mechanisms are another important addition

to almost any GNN architecture (they can also be used as

pooling operations [10] in supplementary material). By ap-

plying attention mechanisms, GNNs are capable of giving

particular nodes or edges a higher weighting during the

aggregation and therefore a higher impact on the predicted

value. This means that it learns which kind of node [17], edge

[43] or substructure [37] should have a higher impact for the

current task at hand. In general there are several different

types of attention mechanisms for graphs, but most of them

calculate the normalized attention score a
ðtÞ
u;v as follows

s
ðtÞ
u;v ¼ rðFðtÞ

w ð½hu; hv�ÞÞ
a
ðtÞ
u;v ¼ expðsu;vÞP

v�2NðuÞexpðsu;v� Þ
hðtþ1Þ
u ¼ rðPv2NðuÞ a

ðtÞ
ðu;vÞh

ðtÞ
v Þ

ð10Þ

where s
ðtÞ
u;v is the unnormalized attention score calculated by

the function FðtÞ
w ð�Þ. hðtþ1Þ

u is then updated with its correspond-

ing attention value a
ðtÞ
ðu;vÞ and its neighbour features – similar

to GCN aggregation operations. The calculation of a
ðtÞ
ðu;vÞ is

basically done via a softmax function and its values sum up to

one, which can be interpreted as probabilities.

Super-nodes (SN) – also called virtual nodes (VN) in this

review – are nodes that are not part of the molecular graph but

can serve as an auxiliary module ([11] in supplementary

material) which gathers information over the whole graph.

This is especially helpful in the prediction of molecular

properties that rely on the global structure of the graph.

One way of doing this is by introducing a super node that

is connected to all other nodes via directed edges, which does

not affect the local propagation [36]. A more active approach

has been applied by [11] in supplementary material for mo-

lecular property prediction. They added a SN that actively

transmits information via longer distances using a MPNN

with a gate and attention mechanism.

Distinct GNNs

Two distinct GNNs that were used for molecular property

predictions are the transformer architecture and Weisfeiler–

Lehman networks.

The transformer architecture introduced by [15] in sup-

plementary material is strictly speaking not a GNN in the
10 www.drugdiscoverytoday.com
classical sense as it requires a sequence as input. Nevertheless,

both publications cited in this review ([8,9] in supplementary

material) circumvent this issue by introducing workarounds.

Overall, the main contribution of the transformer network is

its positional encoding in combination with a multi-head

self-attention mechanism. The latter one is basically an ex-

tension of the above described attention mechanism and can

be formulated with one addition as

hðtþ1Þ
u ¼ r

X
v2NðuÞ

at;k
ðu;vÞh

t;k
v

0
@

1
A

2
4

3
5
k

ð11Þ

where k is the number of heads that are being calculated

within each iteration and then concatenated to get the final

hðtþ1Þ
u .

Weisfeiler–Lehman networks (WL-GNNs) are a vari-

ant of neural networks that try to address the question of

graph isomorphism. They are concerned with GNN and their

expressiveness to distinguish between different types of

graph structures in order to determine whether they are

topologically the same or not. Overall these networks try

to approach this problem by reformulating GNN by incorpo-

rating the WL hierarchy and be at least as expressive as the

Weisfeiler–Lehman graph isomorphism test (WL-test [16] in

supplementary material). The WL-test is based on iterative

updating and recoloring of the nodes in the target graph till a

stable equilibrium is reached. When two graphs have the

same color, they are supposed to be isomorphic – this is

however not always the case. The WL-test is quite similar

to the standard MPNN ([6] in supplementary material). Nev-

ertheless with respect to distinguishing non-isomorphic

graphs, GNNs are at best similar, but not more powerful than

the 1-WL-test ([4] in supplementary material). In order to get

more expressive GNNs, different approaches were proposed.

The reason for putting them into a distinct section was that it

is especially important for molecular property prediction that

the methods used are in theory able to distinguish between

certain isomorphic graphs. Moreover, most standard GNNs

such as vanilla MPNN or GraphSAGE are incapable to do so

([6] in supplementary material). [5] in supplementary mate-

rial points out that GNN with more expressiveness does not

necessarily lead to better results or are computational very

expensive.

Molecular property prediction
For this review we mainly applied the classification scheme of

[9] but extended it with a fifth category as well as several

molecular properties with their corresponding datasets.

These categories are defined by their general level of com-

plexity. Nevertheless, several ambiguities between the differ-

ent molecular properties and their assigned categories exist

and, in several cases, one could argue for or against the carried

out assignment. As stated in the disclaimer above, we do not
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seek to find exact categorizations without any ambiguities for

the different datasets but we want to provide a general

overview over molecular property prediction using GNNs.

Table 3 shows the different types of general categories as

well as their associated molecular properties in combination

with the corresponding datasets, the type of task (regression

or classification) and the GNN that has been used to predict

them. Overall we included 20 different molecular properties

split among 48 different datasets.

The first category is loosely based on quantum-mechanic

properties and contains three molecular property sections

namely coordinates, energies and partial charges comprising

six datasets. The prediction of energies with 13 different GNN

architectures makes the majority of this category, which

results from the easy access to the QM7-QM9 datasets. More-

over, most of the networks within the QM category can be

found in the Conv-GNN category – especially the MPNN

approach with more than 6 out of 14 GNN architectures.

The physicochemical property category comprises 10 mo-

lecular properties, where aqueous solubility is the dominant

property regarding available datasets. Other properties in-

clude polar surface area, bioavailability, octanol solubility,

metabolic stability, boiling and melting point, hydrophobic-

ity, solvation free energy, passive membrane permeability

and blood brain permeability. For the prediction of aqueous

solubility, 16 different GNN architectures are listed which is

followed by hydrophobicity with 13 GNN and solvation free

energy and blood-brain permeability prediction with 10 and

11 unique architectures, respectively. The majority of net-

works in the physicochemical property category are

Conv-GNNs. More than 13 out of 21 GNN architectures in

this category are based on the GCN approach. This is

being followed by the MPNN approach with 8 distinct

architectures.

The biophysics category covers three molecular properties –

affinity, efficacy and activity. Activity is a very vague category

and leaves a lot of room for interpretation regarding the nine

different datasets included.

Architecture wise, this category includes almost all GNNs

shown in Table 2 with a total number of 58 distinct networks.

Most of them are from the Conv-GNN category with 21

architectures alone from the Conv-GNN GCN and another

8 from the MPNN approach. Rec-GNNs account for 7 differ-

ent architectures. The NCI1 dataset was used with 25 different

architectures and is therefore the most used one followed by

the HIV dataset with 21 architectures.

The biological effect category includes three molecular

property sub-categories, namely side effects, toxicity and

ADMET. Toxicity is the category with six datasets. In this

category, the Tox21 and MUTAG datasets are the ones which

have been used in combination with 24 GNN architectures.

ClinTox was used by 12 followed by ToxCast and the PTC

dataset with both 11 different architectures. Overall 35 dif-
ferent architectures have been used of which 22 were from

the Conv-GNN GCN variant, which have been applied

throughout all dataset. The second most used variant is the

MPNN with 8 architectures used in 6 datasets closely followed

by the spectral GCN and Rec-GNNs with both 7 different

architectures.

Conclusion
Graph neural networks have seen an immense acceleration in

the field of drug discovery – especially for the prediction of

molecular properties. In this survey, we reviewed 63 different

publications, categorized 80 different GNNs approaches

according to their underlying architectures and gave a com-

prehensive overview over which of the 20 molecular property

categories, split into 48 datasets, have been predicted with the

reviewed GNN setups.

Reference note. Due to limitations in the number of

allowed citations we continue the list of references in the

supplementary material section (while fully recognizing and

agreeing with [17] in supplementary material).
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